Universal functions in in numpy

Martin McBride, 2021-01-27
Tags arrays, ufunc, universal function, vectorisation, out
Categories numpy
In section Python libraries

The section on vectorisation looked to apply arithmetic operators across a whole array in a single expression. Universal functions allow us to apply mathematical functions across a whole array in a similar way. Universal functions, or ufuncs for short, special NumPy versions of standard maths functions.

Example universal function - sqrt

The sqrt ufunc calculates the square root of each element in an array. For example:

a = np.array([1, 2, 3, 4])
b = np.sqrt(a)

This calculates the square root of each element 1, 2, 3, 4, giving the result:

b = [1.         1.41421356 1.73205081 2.        ]

Of course this can be applied to multi-dimensional arrays too, for example a 2 by 3 array:

a = np.array([[10, 20, 33], [40, 50, 60]])
b = np.sqrt(a)

This again calculates the square root of each element and returns another 2 by 3 array:

b = [[3.16227766 4.47213595 5.74456265]
     [6.32455532 7.07106781 7.74596669]]

Example universal function of two arguments - power

Some ufuncs take two arguments, for example the power function:

a = np.array([5, 10, 5, 10])
b = np.array([2, 2, 3, 3])
c = np.power(a, b)

power(x, y) calculates x to the power y. The function is equivalent to x**y.

So power(5, 2) is 5 squared, or 25, and so on:

b = [  25  100  125 1000]

Summary of ufuncs

There are quite a number of ufuncs, and they are all described in the official NumPy documentation. The main groups of functions are:

  • Maths operations
  • Trigonometric functions
  • Bit manipulation
  • Comparison functions
  • Logical functions
  • Float functions

Additional arguments

ufuncs can be called with additional, optional arguments:


Normally, a ufunc creates a new NumPy array to hold its result:

a = np.array([1, 2, 3, 4])
b = np.array([2, 4, 6, 8])
c = a + b

The out parameter allows us to specify an existing array for the output. To use this feature, we must use the add ufunc rather than the + operator:

a = np.array([1, 2, 3, 4])
b = np.array([2, 4, 6, 8])
r = np.zeros_like(a)
np.add(a, b, out=r)

This fills the array r with the result of a + b. The shape of the output array must be compatible with the input arrays.

One case where this is useful is if you want to re-use an existing array, for example to add a to b and leave the result in a. This is particularly useful if the arrays are very large. Here is how to do it:

a = np.array([1, 2, 3, 4])
b = np.array([2, 4, 6, 8])
np.add(a, b, out=a)

Visit the PythonInformer Discussion Forum for numeric Python.

If you found this article useful, you might be interested in the book NumPy Recipes, or other books, by the same author.


Popular tags

2d arrays abstract data type alignment and animation arc array arrays bezier curve built-in function circle close closure colour comparison operator comprehension context conversion data types design pattern device space dictionary drawing duck typing efficiency encryption enumerate fill filter font font style for loop function function composition function plot functools game development generativepy tutorial generator geometry gif gradient greyscale higher order function html image processing imagesurface immutable object index inner function input installing iter iterator itertools koch curve l system lambda function len line linspace list list comprehension logical operator lru_cache mandelbrot map monad mutability named parameter numeric python numpy object open operator optional parameter or partial application path polygon positional parameter print pure function pycairo radial gradient range recipes rectangle recursion reduce rgb rotation scaling sector segment sequence slice slicing sound spirograph sprite square str stream string stroke subpath symmetric encryption template text text metrics transform translation transparency tuple turtle unpacking user space vectorisation webserver website while loop zip

Copyright (c) Axlesoft Ltd 2020